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The Zeeman Effect

When a hydrogen atom is subjected to a strong external magnetic field B⃗ext the spectral
emission lines are often observed to split. The splitting is roughly proportional to the
strength of the magnetic field. Hale used this phenomenon to discover that sunspots are
regions of strong magnetic field on the sun. Today magnetograms of the sun are taken
frequently to document and quantify solar activity.

We can understand this Zeeman effect using perturbation theory applied to the Hy-
drogen atom.

The Hydrogen atom has a total magnetic moment made up of three contributions.
The first is the orbital magnetic moment given by µ⃗ℓ = − e

2me
L⃗, where e is the electric

charge and me is the mass of the electron. The second is the intrinsic magnetic moment
of the electron, µ⃗S = − e

me
S⃗, and the third is due to the magnetic moment of the nucleus

µ⃗N = γN S⃗N , where S⃗N is the nuclear spin and γN is the nuclear gyromagnetic ratio. Due
to the large mass of the nucleus compared to the electron it is the case that γN << e

me

so we will ignore the nuclear magnetic moment in this calculation. In this approximation
we now have µ⃗Total = µ⃗ℓ + µ⃗S = − e

2me
(L⃗+ 2S⃗).

The external magnetic field will exert a torque on the total magnetic moment of the
hydrogen atom. The Zeeman perturbing Hamiltonian is therefore H1

Z = −µ⃗Total · B⃗ext =
e

2me
(L⃗ + 2S⃗) • B⃗ext. Note that this involves a new vector operator L⃗ + 2S⃗ = J⃗ + S⃗.

Note that the total magnetic moment of the atom is NOT parallel to J⃗ , and this is a
consequence of the non-classical properties of electron spin.

Now we have a situation in which there are two perturbations on the Hydrogen atom
due to magnetic fields, namely H = H0 +H1

SO +H1
Z . How do we proceed from here? It

depends upon which of the two perturbations is stronger.

Weak vs. Strong Field Zeeman Effect
Recall that the internal field in the Hydrogen atom is on the scale of Bint ∼ 10 Tesla
(Homework 5, problem 2). Therefore we will distinguish two limiting cases. The first
is the weak Zeeman effect in which Bext << Bint. In this case we can treat the un-
perturbed case as the spin-orbit corrected Hydrogen atom Hamiltonian and treat H1

Z as
the perturbation. In the second case we have Bext >> Bint and this is the strong Zeeman
effect. In that case we will use the unperturbed Hydrogen atom as the starting point,
ignore spin-orbit coupling, and treat the Zeeman Hamiltonian as the only perturbation.

Weak Field Zeeman Effect
In this case the internal field dominates, meaning that we start with the Hamiltonian for
the Hydrogen atom of H0 + H1

SO and the eigenfunctions in the coupled representation
|nℓjmj⟩. The Zeeman Hamiltonian is the perturbation, leading to a first-order correction
to the energy of E1

Z = ⟨nℓjmj|H1
Z |nℓjmj⟩. The states that we are beginning with are

degenerate (the degeneracy of the un-perturbed Hydrogen atom is p = n2). Hence we
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should be using degenerate perturbation theory here. However, with the choice of basis in
the coupled representation theW matrix is diagonal, so there is no need to use degenerate
perturbation theory since we have already found ’good’ basis states.
The first order change in energy can be written as,

E1
Z = e

2me

−→
B ext • ⟨

−→
J +

−→
S ⟩.

Given the basis states it should be easy to calculate ⟨
−→
J ⟩, but what is ⟨

−→
S ⟩ in this case?

We use the fact that both
−→
S and

−→
L are precessing rapidly due to the internal magnetic

field (and resulting torque) in the Hydrogen atom, but their vector sum
−→
J is fixed.

This means that ⟨
−→
S ⟩ will have no net component perpendicular to

−→
J , at best only a

component parallel to
−→
J . This motivates us to write:

⟨
−→
S ⟩ = ⟨

−→
S •

−→
J

|
−→
J |2

−→
J ⟩. Writing

−→
L =

−→
J −

−→
S , calculating

−→
L •

−→
L and solving for

−→
S •

−→
J yields,

⟨
−→
S ⟩ = j(j+1)−ℓ(ℓ+1)+s(s+1)

2j(j+1)
⟨
−→
J ⟩.

Take the external magnetic field to define the z-direction:
−→
B ext = Bextẑ. The first order

correction to the energy can be written as,
E1

Z = µBgJBextmj, where
µB = eh̄

2me
is called the Bohr magneton and has a value of 5.788× 10−5 eV/T,

and gJ = 1 + j(j+1)−ℓ(ℓ+1)+s(s+1)
2j(j+1)

is called the Landé g-factor (s = 1/2 for the electron in

the Hydrogen atom). Note that mj typically has a range of positive and negative values,

giving rise to a splitting of states depending on the z-component of
−→
J . Note that this

calculation predicts a splitting of states that is proportional to the external magnetic field
strength.

Examples of the weak-field Zeeman effect in Hydrogen
Consider the Hydrogen atom in the n = 2, ℓ = 0, j = 1/2 state, labeled 2s1/2. In this
case the Hydrogen atom can have mj = +1/2 or −1/2. The Landé g-factor evaluates
to gJ = 2, so the Zeeman perturbed energies are E1

Z,2s1/2
= µB2Bext(±1/2) = ±µBBext,

giving rise to one positive energy and one negative energy perturbation.

Consider a second Hydrogen atom state: n = 2, ℓ = 1, j = 3/2 state, labeled 2p3/2.
In this case one finds E1

Z,2p3/2
= 4

3
µBBextmj, where mj could be (−3

2
,−1

2
,+1

2
,+3

2
). This

gives rise to 4 distinct states in finite field.

If we now consider transitions between these states it turns out that there a total
of 3 distinct wavelengths of light. Their splitting in energy is proportional to external
magnetic field.

Strong Field Zeeman Effect
In this case the external field is much stronger than the internal field in the Hydrogen

atom. In this case there is a strong torque on
−→
J and

−→
J +

−→
S , causing both to precess

quickly. The spin-orbit effect is now dominated by the external field, meaning that the
original un-coupled representation is better suited as the un-perturbed starting point.
We go back to the original un-perturbed eigenfunctions in the un-coupled representation
with ψ0 ∝ |ℓ mℓ⟩|s ms⟩. Once again, this choice of basis diagonalizes the W matrix and
there is no need to carry out a degenerate perturbation theory calculation.
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The first order change in energy is now E1
Z,strong =

e
2me

−→
B ext •⟨

−→
L +2

−→
S ⟩. Again taking

the external magnetic field to define the z-direction:
−→
B ext = Bextẑ we find E1

Z,strong =
e

2me
Bext⟨Lz + 2Sz⟩. In this basis we simply get the z-component quantum numbers,

E1
Z,strong = µBBext(mℓ + 2ms).

The perturbed energies are now, En,ℓ,mℓ,s,ms = −13.6 eV /n2 + µBBext(mℓ + 2ms), where
the sum of mℓ + 2ms could be positive or negative.

Intermediate Field Zeeman Effect
In this case the two effects are of comparable size, and the perturbing Hamiltonian is
given by H ′ = H1

SO+H1
Rel+H

1
Z . Now one must use degenerate perturbation theory since

there is no basis in which this perturbation diagonalizes the W matrix.
At this point one has to choose a specific set of degenerate states, construct the corre-
sponding W matrix with this perturbing Hamiltonian, and then diagonalize it to find the
’good’ basis states. This is done for the case of n = 2 in Hydrogen, giving rise to an 8×8
W matrix (4 (ℓ,mℓ) states × 2 for spin). This calculation is carried out on pages 309-310
of Griffiths.
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